高光谱成像技术的相关介绍

时间:2016-11-17      点击次数:1905
 所谓高光谱图像就是在光谱维度上进行了细致的分割,不仅仅是传统所谓的黑、白或者R、G、B的区别,而是在光谱维度上也有N个通道,例如:我们可以把400nm-1000nm分为300个通道。因此,通过高光谱设备获取到的是一个数据立方,不仅有图像的信息,并且在光谱维度上进行展开,结果不仅可以获得图像上每个点的光谱数据,还可以获得任一个谱段的影像信息。
目前高光谱成像技术发展迅速,常见的包括光栅分光、声光可调谐滤波分光、棱镜分光、芯片镀膜等。
 
光栅分光原理:
在经典物理学中,光波穿过狭缝、小孔或者圆盘之类的障碍物时,不同波长的光会发生不同程度的弯散传播,再通过光栅进行衍射分光,形成一条条谱带。也就是说:空间中的一维信息通过镜头和狭缝后,不同波长的光按照不同程度的弯散传播,这一维图像上的每个点,再通过光栅进行衍射分光,形成一个谱带,照射到探测器上,探测器上的每个像素位置和强度表征光谱和强度。一个点对应一个谱段,一条线就对应一个谱面,因此探测器每次成像是空间一条线上的光谱信息,为了获得空间二维图像再通过机械推扫,完成整个平面的图像和光谱数据采集。
 
声光可调谐滤波分光(AOTF)原理:
AOTF由声光介质、换能器和声终端三部分组成。射频驱动信号通过换能器在声光介质内激励出超声波。改变射频驱动信号的频率,可以改变AOTF衍射光的波长,从而实现电调谐波长的扫描。
zui常用的AOTF晶体材料为TeO2即非共线晶体,也就是说光波通过晶体之后以不同的出射角传播。如上图所示:在晶体前端有一个换能器,作用于不同的驱动频率,产生不同频率的振动即声波。不同的驱动频率对应于不同振动的声波,声波通过晶体TeO2之后,使晶体中晶格产生了布拉格衍射,晶格更像一种滤波器,使晶体只能通过一种波长的光。光进入晶体之后发生衍射,产生衍射光和零级光。
 
棱镜分光:
入射光通过棱镜后被分成不同的方向,然后照射到不同方向的探测器上进行成像。棱镜分光后,在棱镜的出射面镀了不同波段的滤光膜,使得不同方向的探测器可以采集到不同光谱信息,实现同时采集空间及光谱信息
 
芯片镀膜
近年来,IMEC(欧洲微电子研究中心)采用高灵敏CCD芯片及SCMOS芯片研制了一种新的高光谱成像技术,在探测器的像元上分别镀不同波段的滤波膜实现高光谱成像,此技术大大降低的高光谱成像的成本。
 
版权所有©2024 🔝米兰app官网版下载官方版 All Rights Reserved     备案号:沪ICP备15024835号-3     sitemap.xml     管理登陆    技术支持: 化工仪器网    
Baidu
map